Solved Examples/Numericals On Coordinate System & Transformation - 1.


Q.1 Express the following points in Cartesian co-ordinate system.

a) P1 (2, 30o, 5) 
b) P2 (4, 30o, 60o)

Ans.
a) P1 (ρ, φ, z) → P1 (x, y, z)
x = ρ cosφ = 1cos 60o = 0.5
y = ρ sinφ = 1sin 60o = 0.87
z = z = 2

Therefore P1 = (0.5, 0.87, 2)

b) P2 (r, θ, φ) → P2 (x, y, z)
x = r sinθ cosφ = 4sin 30o cos 60o = 1
y = r cosθ cosφ = 4cos 30o cos 60o= 1.73
z = r cosθ = 4cos 60o = 3.46

Therefore P2 = (1, 1.73, 3.46)



Q.2. Express the point P (1, -4, -3) in cylindrical and spherical co-ordinates?

Ans.
P1 (x, y, z) → P1 (ρ, φ, z)
P2 (x, y, z) → P2 (r, θ,φ)



Q. 3 
a) If V = XZ – XY +YZ, express V in Cylindrical co-ordinate system.

b) If U = X2 + 2Y2 +3z2, express U in Spherical co- ordinates System.

Ans.
a) Since the equation given is a scalar equation, hence we just need to substitute the values of x, y and z in terms of ρ, φ and z.

We know x = ρ cosφ and y = ρ sinφ

V= xz – xy – yz
= (ρ cosφ) z – (ρ cosφ) (ρ sinφ) – (ρ sinφ)z
= ρz cosφ – ρ2 cosφ sinφ – ρz sinφ


b) We know x = r sinθcosφ; y = r sinθsinφ & z = rcosθ

U = x2 + 2y2 +3z2
= (r sinθcosφ)2 +2(r sinθsinφ)2 +3(r cosθ)2
= r2 + r2 sin2 θsin2 φ + 2 r2cos2θ



Q.4 Transform the vector E = (y2 – x2) ax + xyz ay + (x2 – z2) ax to cylindrical and spherical system?

Ans.

Eρ = (y2 – x2) cosφ + xyz sinφ
= ρ2 (sin2 φ - cos2 φ) + ρ2 z cosφ sin2 φ
= - ρ2 cos2φ cosφ + ρ2 z cosφ sin2 φ

E φ = - (y2 – x2) sinφ + xyz cosφ
= ρ2 cos2φ cosφ + ρ2 z cos2 φ sin φ

Ez = x2 – z2 = ρ2 cos2 φ - z2

E = ρ2 cosφ (z sin2 φ - cos2φ)aρ + ρ2 sinφ (z cos2 φ + cos2φ)aφ
+ (ρ2 cos2 φ - z2)az

Now E in spherical co-ordinate system is given as ,


Er = (y2 – x2) sinθ cosφ + xyz sinθ sinφ + (x2 – z2) cosθ

= (r2 sin2 θsin2 φ – r2 sin2 θcos2 φ) sinθ cosφ +(r sinθcosφ)(r sinθsinφ)(r cosθ) sinθ sinφ + ( r2 sin2 θcos2 φ – r2 cos2 θ) cosθ

= r2 sin3 θ (sin2 φ - cos2 φ) cosφ + r3 sin3 θsin2 φ cosθcosφ + ( r2 sin2 θcos2 φ – r2 cos2 θ) cosθ

Similarly,

Eθ = - r2 sin2 θ (cos2φ) cosθ cosφ + r2 sin2 θsin2 φ cos2 θcosφ - (r2 sin2 θcos2 φ – r2 cos2 θ) sinθ

Eφ = -(r2 sin2 θsin2 φ – r2 sin2 θcos2 φ) sinφ + r3 sin2 θsinφ cosθ cos2 φ

E = Er ar + Eθ aθ + Eφ aφ 




Q.5 Express the vector A = ρ (z2 + 1)aρ - ρz cosφaφ in Cartesian co-ordinate system?
Ans.


Ax = ρ (z2 + 1) cosφ + ρz cosφ sinφ







Ay = ρ (z2 + 1) sinφ - ρz cos2φ







Az = 0
Hence, A = Axax + Ayay + Azaz






Q.6 Express the vector E =2r sinθ cosφar + r cosθ cosφaθ – r sinφaφ in Cartesian co-ordinate system?
Ans.
















Ex = 2r sin2 θcos2 φ + r cos2 θcos2 φ + r sin2 φ

Substituting the above values, we get










ALSO READ:

- Introduction To Coordinate System.

- Cartesian Coordinate System / Rectangular Coordinate System (x, y, z).

- Differential Analysis Of Cartesian Coordinate System.

- Circular Cylindrical Coordinate System (ρ, φ, z).

- Differential Analysis Of Cylindrical Coordinate System.


- Spherical Coordinate System ( r, θ , φ).

- Differential Analysis Of Spherical Coordinate System.

- Numericals / Solved Examples - Page 1.

- Numericals / Solved Examples - Page 2.


Your suggestions and comments are welcome in this section. If you want to share something or if you have some stuff of your own, please do post them in the comments section.


Comments

  1. my...uttam its me srikanth (ece frm giet).Nice work yar...all the best for u jounery n sucess......inur life......

    ReplyDelete

Post a Comment

Popular posts from this blog

Electric Field Intensity (E) Due To a Circular Ring Charge - Field Theory.

Circular Cylindrical Coordinate System (ρ, φ, z) - Field Theory.

Electric Potential (V) Due To A Uniformly Charged Circular Disc - Field Theory.