Solved Exercise/Numericals - Transmission Lines - 1.



Q.1) A transmission line operating at 500 MHz has Zo = 80Ω, α = 0.04Np/m, β = 1.5 rad/m. Find the line parameters R, L, G and C.

Answer:

Since Zo is real & α ǂ 0, this is a distortionless line.



Ro = α Zo = 0.04 x 80 = 3.2 Ω / m

G = α / Zo = 0.04 / 80 = 5 x 10-4 Ω / m

L = β Zo / ω = 1.5 x 80 / (2 π x 5 x 108 ) = 38.2 nH / m

C = L G / R = 38.2 x 10-9 x 5 x 10-4 / 3.2 = 5.97 pF / m



Q.2) A telephone line R = 30 Ω /km, L = 100 mH/km, G = 0 , and C = 20 µF/km. At f = 1 kHz, obtain:

a) The characteristics impedance of the line.

b) The propagation constant.
c) The phase velocity.


Answer:





Q.3) A 40 m long transmission line has Vg = 15 ∠0o Vrms , Zo = 30 + j60 Ω, and VL = 5 ∠-48o Vrms . If the line is matched to the load, calculate:

a) The input impedance Zin

b) The sending end current Iin and voltage Vin
c) The propagation constant γ



Answer:

a) Zg  =  Z1  --> Zin  =  Zo  =  30 + j60  Ω

b) Vin  =  Vo  =  ( Zin / (Zin + Zo) ) Vg  =  Vg / 2  =  7.5∠0oVrms

     Iin  =  Ip  =  Vg / (Zg + Zin)  =  V/ 2Zo  =  15∠0o / 2 (30 + j60o)  =  0.05∠-63.43o A


c) Since Zo  =  Zr, Γ = 0 --> Vo- = 0, Vo+ = Vo

The load voltage is VL = Vs (z = l) = Vo+ e-γl

e-γl = Vo+ / VL = 7.5 ∠0o / 5 ∠ -48o = 1.5 ∠48o

eαl ejβl = 1.5 ∠48o

eαl = 1.5 --> α = (1 / l) ln (1.5) = (1/40) ln (1.5) = 0.0101

ejβl = ej48 --> β = (1 / l) (48o / 180o) π rad = 0.02094

γ = 0.0101 + j0.2094 / m



Comments

Popular posts from this blog

Circular Cylindrical Coordinate System (ρ, φ, z) - Field Theory.

Electric Field Intensity (E) Due To a Circular Ring Charge - Field Theory.

Electric Potential (V) Due To A Uniformly Charged Circular Disc - Field Theory.